3.6.40 \(\int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=170 \[ -\frac {\left (2 a e^2 g-c d (d g+e f)\right ) \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{3/2} (c d f-a e g)^{3/2}}-\frac {(e f-d g) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x} (f+g x) (c d f-a e g)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {878, 874, 205} \begin {gather*} -\frac {\left (2 a e^2 g-c d (d g+e f)\right ) \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{3/2} (c d f-a e g)^{3/2}}-\frac {(e f-d g) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x} (f+g x) (c d f-a e g)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(3/2)/((f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

-(((e*f - d*g)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x))) - ((2
*a*e^2*g - c*d*(e*f + d*g))*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*
Sqrt[d + e*x])])/(g^(3/2)*(c*d*f - a*e*g)^(3/2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 878

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(e^2*(e*f - d*g)*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/(g*(n + 1)*(c*e*f + c*d*g
 - b*e*g)), x] - Dist[(e*(b*e*g*(n + 1) + c*e*f*(p + 1) - c*d*g*(2*n + p + 3)))/(g*(n + 1)*(c*e*f + c*d*g - b*
e*g)), Int[(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p
}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m +
 p - 1, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=-\frac {(e f-d g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g (c d f-a e g) \sqrt {d+e x} (f+g x)}+\frac {\left (e \left (\frac {1}{2} c d e^2 f+\frac {3}{2} c d^2 e g-e \left (c d^2+a e^2\right ) g\right )\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{g \left (c d e^2 f+c d^2 e g-e \left (c d^2+a e^2\right ) g\right )}\\ &=-\frac {(e f-d g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g (c d f-a e g) \sqrt {d+e x} (f+g x)}-\frac {\left (e^2 \left (2 a e^2 g-c d (e f+d g)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{g (c d f-a e g)}\\ &=-\frac {(e f-d g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g (c d f-a e g) \sqrt {d+e x} (f+g x)}-\frac {\left (2 a e^2 g-c d (e f+d g)\right ) \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{3/2} (c d f-a e g)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 155, normalized size = 0.91 \begin {gather*} \frac {\sqrt {d+e x} \left (-\frac {\sqrt {a e+c d x} \left (c d (d g+e f)-2 a e^2 g\right ) \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{\sqrt {c d f-a e g}}-\frac {\sqrt {g} (d g-e f) (a e+c d x)}{f+g x}\right )}{g^{3/2} \sqrt {(d+e x) (a e+c d x)} (a e g-c d f)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(3/2)/((f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(Sqrt[d + e*x]*(-((Sqrt[g]*(-(e*f) + d*g)*(a*e + c*d*x))/(f + g*x)) - ((-2*a*e^2*g + c*d*(e*f + d*g))*Sqrt[a*e
 + c*d*x]*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]])/Sqrt[c*d*f - a*e*g]))/(g^(3/2)*(-(c*d*f) +
a*e*g)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 180.02, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(d + e*x)^(3/2)/((f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 896, normalized size = 5.27 \begin {gather*} \left [-\frac {{\left (c d^{2} e f^{2} + {\left (c d^{3} - 2 \, a d e^{2}\right )} f g + {\left (c d e^{2} f g + {\left (c d^{2} e - 2 \, a e^{3}\right )} g^{2}\right )} x^{2} + {\left (c d e^{2} f^{2} + 2 \, {\left (c d^{2} e - a e^{3}\right )} f g + {\left (c d^{3} - 2 \, a d e^{2}\right )} g^{2}\right )} x\right )} \sqrt {-c d f g + a e g^{2}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d f g + a e g^{2}} \sqrt {e x + d}}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) + 2 \, {\left (c d e f^{2} g + a d e g^{3} - {\left (c d^{2} + a e^{2}\right )} f g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{2 \, {\left (c^{2} d^{3} f^{3} g^{2} - 2 \, a c d^{2} e f^{2} g^{3} + a^{2} d e^{2} f g^{4} + {\left (c^{2} d^{2} e f^{2} g^{3} - 2 \, a c d e^{2} f g^{4} + a^{2} e^{3} g^{5}\right )} x^{2} + {\left (c^{2} d^{2} e f^{3} g^{2} + a^{2} d e^{2} g^{5} + {\left (c^{2} d^{3} - 2 \, a c d e^{2}\right )} f^{2} g^{3} - {\left (2 \, a c d^{2} e - a^{2} e^{3}\right )} f g^{4}\right )} x\right )}}, -\frac {{\left (c d^{2} e f^{2} + {\left (c d^{3} - 2 \, a d e^{2}\right )} f g + {\left (c d e^{2} f g + {\left (c d^{2} e - 2 \, a e^{3}\right )} g^{2}\right )} x^{2} + {\left (c d e^{2} f^{2} + 2 \, {\left (c d^{2} e - a e^{3}\right )} f g + {\left (c d^{3} - 2 \, a d e^{2}\right )} g^{2}\right )} x\right )} \sqrt {c d f g - a e g^{2}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {c d f g - a e g^{2}} \sqrt {e x + d}}{c d e g x^{2} + a d e g + {\left (c d^{2} + a e^{2}\right )} g x}\right ) + {\left (c d e f^{2} g + a d e g^{3} - {\left (c d^{2} + a e^{2}\right )} f g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{c^{2} d^{3} f^{3} g^{2} - 2 \, a c d^{2} e f^{2} g^{3} + a^{2} d e^{2} f g^{4} + {\left (c^{2} d^{2} e f^{2} g^{3} - 2 \, a c d e^{2} f g^{4} + a^{2} e^{3} g^{5}\right )} x^{2} + {\left (c^{2} d^{2} e f^{3} g^{2} + a^{2} d e^{2} g^{5} + {\left (c^{2} d^{3} - 2 \, a c d e^{2}\right )} f^{2} g^{3} - {\left (2 \, a c d^{2} e - a^{2} e^{3}\right )} f g^{4}\right )} x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*((c*d^2*e*f^2 + (c*d^3 - 2*a*d*e^2)*f*g + (c*d*e^2*f*g + (c*d^2*e - 2*a*e^3)*g^2)*x^2 + (c*d*e^2*f^2 + 2
*(c*d^2*e - a*e^3)*f*g + (c*d^3 - 2*a*d*e^2)*g^2)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*
a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*
e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(c*d*e*f^2*g + a*d*e*g^3 - (c*d^2 + a*e^2)*f*g^2)*s
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f^3*g^2 - 2*a*c*d^2*e*f^2*g^3 + a^2*d*e^2*f
*g^4 + (c^2*d^2*e*f^2*g^3 - 2*a*c*d*e^2*f*g^4 + a^2*e^3*g^5)*x^2 + (c^2*d^2*e*f^3*g^2 + a^2*d*e^2*g^5 + (c^2*d
^3 - 2*a*c*d*e^2)*f^2*g^3 - (2*a*c*d^2*e - a^2*e^3)*f*g^4)*x), -((c*d^2*e*f^2 + (c*d^3 - 2*a*d*e^2)*f*g + (c*d
*e^2*f*g + (c*d^2*e - 2*a*e^3)*g^2)*x^2 + (c*d*e^2*f^2 + 2*(c*d^2*e - a*e^3)*f*g + (c*d^3 - 2*a*d*e^2)*g^2)*x)
*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e*x +
 d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + (c*d*e*f^2*g + a*d*e*g^3 - (c*d^2 + a*e^2)*f*g^2)*sqrt(c*
d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f^3*g^2 - 2*a*c*d^2*e*f^2*g^3 + a^2*d*e^2*f*g^4 +
 (c^2*d^2*e*f^2*g^3 - 2*a*c*d*e^2*f*g^4 + a^2*e^3*g^5)*x^2 + (c^2*d^2*e*f^3*g^2 + a^2*d*e^2*g^5 + (c^2*d^3 - 2
*a*c*d*e^2)*f^2*g^3 - (2*a*c*d^2*e - a^2*e^3)*f*g^4)*x)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.03, size = 347, normalized size = 2.04 \begin {gather*} \frac {\left (-2 a \,e^{2} g^{2} x \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+c \,d^{2} g^{2} x \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+c d e f g x \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )-2 a \,e^{2} f g \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+c \,d^{2} f g \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+c d e \,f^{2} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )-\sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, d g +\sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, e f \right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, \left (a e g -c d f \right ) \left (g x +f \right ) \sqrt {\left (a e g -c d f \right ) g}\, g} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(g*x+f)^2/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2),x)

[Out]

(-2*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x*a*e^2*g^2+arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*
g)^(1/2)*g)*x*c*d^2*g^2+arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x*c*d*e*f*g-2*arctanh((c*d*x+a*e)
^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*a*e^2*f*g+arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*c*d^2*f*g+arc
tanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*c*d*e*f^2-((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*d*g+((a*
e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*e*f)/(e*x+d)^(1/2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)/(c*d*x+a*e)^(
1/2)/(a*e*g-c*d*f)/g/(g*x+f)/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (e x + d\right )}^{\frac {3}{2}}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (g x + f\right )}^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^{3/2}}{{\left (f+g\,x\right )}^2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(3/2)/((f + g*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int((d + e*x)^(3/2)/((f + g*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(g*x+f)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________